
On the Degeneracy of Σ-Types in Presence of
Computational Classical Logic

Hugo Herbelin

LIX - INRIA-Futurs - PCRI
École Polytechnique

F-91128 Palaiseau Cedex

Abstract. We show that a minimal dependent type theory based on Σ-
types and equality is degenerated in presence of computational classical
logic. By computational classical logic is meant a classical logic derived
from a control operator equipped with reduction rules similar to the ones
of Felleisen’s C or Parigot’s µ operators. As a consequence, formalisms
such as Martin-Löf’s type theory or the (Set-predicative variant of the)
Calculus of Inductive Constructions are inconsistent in presence of com-
putational classical logic. Besides, an analysis of the role of the η-rule for
control operators through a set-theoretic model of computational classi-
cal logic is given.

1 Introduction

1.1 Computational Classical Logic

The call-with-current-continuation operator is a construct that has been
introduced in Scheme a few decades ago. Numerous variants of the original
call-with-current-continuation have been considered. Felleisen introduced
the operators C, K and A and studied calculi based on these operators [4]. The
SML language introduced the callcc and throw operators, all equipped with
comparable reduction rules.

Griffin [5] showed that Felleisen’s C operator was typable under some con-
ditions of type ¬¬A → A in a simply typed framework, thus extending the
Curry-Howard correspondence to classical logic.

Parigot [7] introduced a distinction between the (ordinary) variables and
the continuation variables, together with operators µ and brackets, leading to
the elegant λµ-calculus. A variant of λµ-calculus based on SML callcc (there
renamed catch) and throw has been given in Crolard [3].

Basically, computational classical calculus comes with commutation rules
(called structural rules or ζ rules in the context of λµ-calculus), an elimination
rule (also called simplification or ηµ rule in the context of λµ-calculus), and an
idempotency rule (also called renaming or βµ rule) .

As an introduction to computational classical logic, we here describe λµ-
calculus:

t, u ::= λx.t | tu | x | µα.c terms
c ::= [α]t commands

To express the reduction rules, we need to define the notion of substitution
of a continuation variable α by an evaluation context C for commands (i.e. a
command with a placeholder { }):

x[C/α] = x
(λx.t)[C/α] = λx.(t[C/α])
(tu)[C/α] = t[C/α]u[C/α]
(µβ.c)[C/α] = µβ.(c[C/α])
([α]t)[C/α] = C{t[C/α]}
([β]t)[C/α] = [β](t[C/α]) α 6= β

where x in the second rule and β in the fourth rule are chosen such that no
capture of free variables in C happens.

In a call-by-name setting, the reduction rules express as:

(λx.t)u→ t[u/x] β
(µα.c)t → µα.(c[[α]({ }t)/α]) ζapp
[β]µα.c→ c[[β]{ }/α] βµ

µα.[α]t → t (α not free in t) ηµ

Thanks to computational classical logic, classical proofs of simple formulae
such as Σ0

1 formulae eventually normalise to proofs which are (essentially) intu-
itionistic.

Actually, it is worth to notice that reduction rules close to the rules above
were already present in Prawitz’ proof of normalisation of the classical extension
of natural deduction [9]. What was apparently missing, even after the emergence
of the intuitionistic part of the proof-as-program paradigm, was the conviction
that they were computationally meaningful in practise.

1.2 Computational vs Platonistic Classical Logic

We oppose computational classical logic to Platonistic classical logic. In Platon-
istic classical logic, computationally undecidable properties are transcendentally
decided by an oracle which transgresses the infinity of time. A Platonistic inter-
pretation of classical logic is given in Sect. 2.5.

1.3 Classical Logic, Axiom of Choice and Definite Description

The axiom of choice (in its functional form) strongly interacts with classical
logic. Coquand [2] showed that their conjunction forces propositions to be em-
beddable in the booleans, thus forbidding non trivial realisability models of the
propositional world. Especially, predicative logics with quantification over func-
tions become impredicative in presence of the axiom of choice in its functional
form and classical logic (observation attributed to Spector [11]). Also, logics with
non degenerated impredicative sets such as the Calculus of Inductive Construc-
tions are inconsistent in presence of the axiom of choice in its functional form
and classical logic.

More precisely, what strongly modifies the semantics of a classical logic is not
strictly speaking the (functional form of the) axiom of choice but its underlying
principle of definite description (also called axiom of unique choice or function
construction principle), as shown by Pottinger [8]. Indeed, the functional form
of the axiom of choice in type theory

(∀x : A,∃y : B,R(x, y))→ ∃f : A→ B,∀x : A,R(x, f(x))

can be shown equivalent in impredicative type theory to the conjunction of its
relational form

(∀x : A,∃y : B,R(x, y))→ ∃R′ ⊂ R,∀x : A,∃!y : B,R′(x, y)

and of the principle of definite description

(∀x : A,∃!y : B,R(x, y))→ ∃f : A→ B,∀x : A,R(x, f(x)) .

In presence of classical logic, the principle of definite description alone is enough
to force propositions to be embedded in the booleans.

1.4 Computational Classical Logic and Strong Existential
Quantification

Classical logic inherits a computational interpretation through the reduction
rules assigned to control operators. The functional form of the axiom of choice
also inherits a computational interpretation through the reduction rules of strong
existential quantification, which is existential quantification equipped with its
first and second projections, the type of the second projection being dependent
on the first projection.

It is a natural question to study their interaction at a computational level,
knowing that they imply at the logical level the existence of a retraction from
propositions to the booleans [2].

The computational analysis of the proof of embedding of the propositions
within the booleans shows a failure of subject reduction which is due to the
dependency of the type of the second projection of the strong existential in the
first projection, making untypable the commutation rule of the control operator
used for the interpretation with the second projection of the strong existential.

Subject reduction can be restored to the price of assuming proof-irrelevance.
Concurrently, it can be shown that the commutation rule of the control oper-
ator used for the interpretation with the first projection itself leads to proof-
irrelevance, or, more generally, to the degeneracy of the quantification domain.
This is the purpose of the current paper.

2 The Degeneracy of Computationally Classical Type
Theory with Σ-Types

In this section, we use the terminology Σ-types to denote indifferently strong
existential quantification or usual Σ-types with both projections (also referred
to as strong sums).

` π : A(t)

` (t, π) : Σx.A(x)

` π : Σx.A(x)

` prf π : A(wit π)

t → u

` refl : t = u

` π1 : t = u ` π2 : A(t)

` subst π1 π2 : A(u)

Fig. 1. Inference rules of TTΣ

2.1 A Minimal Logic of Σ-Types and Equality

We consider a type theory TTΣ based on strong existential quantification (i.e.
Σ-types) over a unique domain. We use the variable names x, y, ... to range over
the elements of the domain. The syntax of proofs and terms is mutually given
by

t, u ::= x | wit π
π ::= (t, π) | prf π | refl

The syntax of formulae is given by

A,B ::= t = u | Σx.A

The set FV (A) of free variables of A is defined as usual.
This theory is equipped with a single reduction rule on the language of terms.

wit(t, π)→ t (ιwit)

The inference rules are on Fig. 1.

Proposition 1. TTΣ is not degenerated, i.e., for distinct variables x and y,
6` x = y.

This is direct by interpreting Σ-types on a domain D with (at least) two
distinct elements a 6= b. For distinct elements in D, equality is interpreted as the
empty set, otherwise as a singleton set with the unique element interpreting the
reflexivity proof. The construction (t, π) is interpreted as pairing and wit and prf
as the first and second projections so that wit (t, π) and t are identical through
the interpretation and the reflexivity rule is valid.

If our only reduction rule is ιwit, it is because it is enough to infer the results
shown in the next subsections. We would have got a better-behaved reduction
system by adding the rules prf(t, π)→ π and subst π1 (t, π2)→ (t, subst π1 π2)).
Moreover, with the premise of the reflexivity rule generalised to the congruent
reflexive-symmetric-transitive closure of →, and the extra rule subst refl refl →
refl added, we would have got normalisability of the proofs, and, as a consequence,
the subformula property and a syntactic evidence of the non-derivability of the
degeneracy of the domain.

Γ ` π : A(t)

Γ ` (t, π) : Σx.A(x)

Γ ` π : Σx.A(x)

Γ ` prf π : A(wit π)

t → u

Γ ` refl : t = u

Γ ` π1 : t = u Γ ` π2 : A(t)

Γ ` subst π1 π2 : A(u)

Γ, k : ¬A ` π : A

Γ ` cck π : A

Γ, k : ¬A ` π : A

Γ, k : ¬A ` th k π : B

Fig. 2. Inference rules of TTcc
Σ

2.2 ... and its Computationally Classical Extension TT cc
Σ

We now extend the type theory with classical logic. To allow reasoning by con-
tradiction on a formula A, we add the operator cck π that tries to prove A under
the assumption k : ¬A. A contradiction is derived at any point of the derivation
by applying the new operator th k π to any proof π of A in the context k : ¬A.
We thus extend the syntax of proofs with

π ::= . . . | cck π | th k π

where k ranges over a set of continuation variables. The operators cc and th are
similar to the catch and throw operators studied in Crolard [3]. In terms of the
λµ-calculus, cck π and th k π are essentially the same as µk.[k]π and µ .[k]π
where denotes a fresh continuation variables that do not occur in π.

The associated inference rules involved contexts of negated formulae. The
rules for cc and th are reminiscent of Peirce’s law and negation elimination.
The full resulting set of inference rules is given on Fig. 2.

Since proofs occur in terms and that we want the classical extension to be
computational, we also extend the syntax of terms. This extension requires to
extend also the syntax of proofs with a construction which actually occurs only
as argument of wit in terms.

t ::= . . . | cck t
π ::= . . . | th k t

We want this classical extension to be computational. We add a subset of
the standard computation rules for cc and th [3], but adapted to Σ-types. It is
just enough to be able to derive the degeneracy of the domain.

wit(cck π)→ cck wit(π[k(wit { })/k]) (ζwit)
cck t → t k not free in t (ηcc)

where [k(wit { })/k] denotes the capture-free substitution which replaces every
occurrence of th k t with th k (wit t). Notice that rule ηcc is identical to ηµ

along the interpretation of cck t as µk.[k]t.

The terms and proofs of TTccΣ contain a context binder (the operator cc)
but do not include any term or proof binder. Hence, the reduction rules of TTccΣ

do not commit to a call-by-name or call-by-value discipline of reduction. This
is in contrast with λµ-calculus where the presence of a term binder (the λ-
abstraction) introduces a critical pair (observable on the redex (λx.t)(µα.c))
that can be resolved by committing the reduction system either to a call-by-
name or a call-by-value discipline.

2.3 Deriving the Collapse of the Quantification Domain

The domain of terms in TTccΣ is degenerated. Indeed, we have

Proposition 2. For any two variables x and y, x = y is derivable in TTccΣ .

The proof proceeds as follows.

– First prove Σz.z = x using the artificially classical proof

π0 , cck (x, th k (x, refl)) .

– Deduce wit π0 = x whose proof is π1 , prf π0.
– Observe that

wit π0 → cck(wit(x, th k wit(x, refl))) (ζwit)
→ cck x (ιwit)

so that
π2 , subst refl π1

is a proof of cck x = x.
– Show then Σz.z = y using the artificially classical proof

π3 , cck (x, th k (y, refl)) .

– Observe also that

wit π3 → cck (wit(x, th k wit(y, refl))) (ζwit)
→ cck x (ιwit)

to conclude that
π4 , subst refl (prf π3)

is a proof of cck x = y.
– Conclude that

subst π3 π4

is a proof of x = y.

Notice that we only used the ζwit and ιwit rules. The next section shows that
for typed control operators, one can exhibit a set-theoretic model of the system.

2.4 Explicit Typing of cc and th: System TT ccT

Σ

We now consider explicitly typed cc and th. The new syntax of terms is

t, u ::= x | wit π | ccx.A
k t

π ::= (t, π) | prf π | refl | cck:¬A π | thB k π | thB k t

The typing rules are similar: just add the constraint for typing cck:¬A π
that ¬A is the type of k in the context and add the constraint that the type of
thB k π is B. The new reduction rules now take care of types.

wit(t, π) → t (ιwit)
wit(cck:¬Σx.A π)→ ccx.A

k wit(π[k(wit { })/k]) (ζwit)
ccx.A

k t → t k not free in t (ηcc)

Thanks to the explicit typing, the previous proof of degeneracy do not work
any longer. Indeed, the two occurrences of cck x now appear as ccz.z=x

k x and
ccz.z=y

k x so that they are not convertible any more. The next section shows that
ιwit and ζwit together with explicitly typed cc and th do not allow to derive
the degeneracy of the quantification domain.

2.5 A Set-Theoretic Model of TT ccT

Σ without ηcc

Let D be a non empty domain and d0 be an element of D. To distinguish the
different roles we give to ∅, we use the abbreviation • to denote ∅ when seen as
an element rather than as a set. We interpret the formulae of TTccT

Σ by sets in
T where T is defined by

T0 = {∅, {•}}
Tn+1 = {Σa∈DTa|(Ta)a∈D ∈ T Dn }
T =

⋃
n Tn

where Σa∈DTa = {(a, p)|p ∈ Ta}.
For each inhabited ΣaTa, we let dΣaTa

be a canonical witness of the set, i.e.
a constant in D such that TdΣaTa

is inhabited (we need the axiom of choice if the
domain is not countable). For empty ΣaTa, we let dΣaTa be d0. To each T ∈ T ,
we associate a canonical witness ε(T) (which is the same for all empty T). It is
defined by

ε(∅) = ε({•}) = •
ε(ΣaTa) = (dΣaTa , ε(TdΣaTa

))

and it satisfies ε(T) ∈ T for non empty T . We use the letter ρ to denote substitu-
tions from the set of variables of the logic to D. The notation ρ, (x← a) denotes
the substitution which binds (or rebinds) x to a. For a given substitution ρ, we
define the interpretations of terms, proofs and formulae as follows:

[[x]]ρ = ρ(x)
[[ccx.A

k t]]ρ = d[[Σx.A]]ρ

[[wit π]]ρ = fst([[π]]ρ)

[[refl]]ρ = •
[[subst π1 π2]]ρ = [[π2]]ρ
[[(t, π)]]ρ = ([[t]]ρ, [[π]]ρ)
[[prf π]]ρ = snd([[π]]ρ)
[[ccA

k π]]ρ = ε([[A]]ρ)
[[thB k π]]ρ = ε([[B]]ρ)

[[t = u]]ρ = {•} if [[t]]ρ = [[u]]ρ
[[t = u]]ρ = ∅ otherwise
[[Σx.A(x)]]ρ = Σa∈D[[A(x)]]ρ,(x←a)

Notice that we don’t need to define [[th k t]]ρ since this pattern occurs only
within proofs π occurring in terms of the form cck (wit (t′, π)).

Lemma 3. The interpretation validates the reduction rules ιwit and ζcc.

[[wit(t, π)]]ρ = [[t]]ρ
[[wit(cck:Σx.A(x) π)]]

ρ
= [[ccx.A(x)

k wit(π[k(wit { })/k])]]
ρ

Moreover,

[[A(x)]]ρ,(x←[[t]]ρ) = [[A(t)]]ρ

Proposition 4 (Soundness). If Γ ` π : A then, forall ρ ∈ FV (A) → D, if
forall ki : ¬Ai in Γ , [[Ai]]ρ is empty, then [[π]]ρ ∈ [[A]]ρ

Proof. The proof is by induction.

– If Γ ` refl : t = u with t → u then by validity of the reduction rules,
[[t]]ρ = [[u]]ρ and [[t = u]]ρ = {•}.

– If Γ ` (t, π) : Σx.A(x) with Γ ` π : A(t) then, by induction [[π]]ρ ∈ [[A(t)]]ρ =
[[A(x)]]ρ,(x←[[t]]ρ), hence [[(t, π)]]ρ = ([[t]]ρ, [[π]]ρ) ∈ [[Σx.A(x)]]ρ.

– If Γ ` prf π : A(wit π) with Γ ` π : Σx.A(x) then, by induction, we
get [[π]]ρ ∈ [[Σx.A(x)]]ρ, so that there exists c and p such [[π]]ρ = (c, p)
and p ∈ [[A(x)]]ρ,(x←c). Since c = fst([[π]]ρ) = [[wit π]]ρ, we have [[prf π]]ρ =
snd((c, p)) = p ∈ [[A(x)]]ρ,(x←c) = [[A(wit π)]]ρ.

– If Γ ` subst π1 π2 : A(u) with Γ ` π1 : t = u and Γ ` π2 : A(t) then, by
induction, [[π1]]ρ ∈ [[t = u]]ρ, so that [[t = u]]ρ is not empty and [[t]]ρ = [[u]]ρ.
Also, [[π2]]ρ ∈ [[A(t)]]ρ so that we have [[subst π1 π2]]ρ = [[π2]]ρ ∈ [[A(t)]]ρ =
[[A(x)]]ρ,(x←[[t]]ρ) = [[A(x)]]ρ,(x←[[u]]ρ) = [[A(u)]]ρ.

– If Γ ` cck π : A with Γ, k : ¬A ` π : A then, [[A]]ρ is either empty or
inhabited. If it is inhabited, then ερ(A) ∈ [[A]]ρ, hence [[cck π]]ρ ∈ [[A]]ρ.
Otherwise, we can apply the induction hypothesis and get [[π]]ρ ∈ [[A]]ρ,
which is contradictory with the assumption that [[A]]ρ is empty.

– If Γ, k : ¬A ` kπ : B with Γ, k : ¬A ` π : A then, by induction, we get
[[π]]ρ ∈ [[A]]ρ which contradicts the assumption that [[A]]ρ is empty.

Taking for D a domain with at least two elements, we get the following
corollary.

Corollary 5. TTccT

Σ without the ηcc rule is not degenerated, i.e. for distinct
variables x and y, we have 6` x = y.

2.6 Deriving the Collapse of the Quantification Domain with
Explicitly Typed Control Operators

Though TTccT

Σ without the ηcc rule is not degenerated, it gets degenerated by
considering the ηcc rule. Indeed, we have again

Proposition 6. For any two variables x and y, x = y is derivable in TTccT

Σ .

The new proof proceeds as follows.

– First prove Σz.x = z using the artificially classical proof

π0 , cck:Σz.x=z (y, th k (x, refl)) .

– Then observe that

wit π0 → cck:Σz.x=z (wit(y, th k wit(x, refl))) (ζwit)
→ ccz.x=z

k y (ιwit)
→ y (ηcc)

– Conclude that
subst refl (prf π0)

is a proof of x = y.

2.7 Inconsistency of Martin-Löf ’s Type Theory Extended with
Computational Classical Logic

Since Martin-Löf’s type theory [6] has Σ-types in Set, its extension with com-
putational classical logic is inconsistent. We first extend the syntax of terms:

t ::= . . . | cck t

Then, we let ¬A , A→ N0 and we add the following inference rules:

(k ∈ ¬A)
t ∈ A

cck t ∈ A

(k ∈ ¬A)
t = u ∈ A

cck t = cck u ∈ A

For equality, we restrict the commutation of cc with the elimination operator
E for Σ-types to the non dependent case, i.e. to the case where x and y do not
occur free in C:

(k ∈ ¬(Σx ∈ A)B(x))
t ∈ (Σx ∈ A)B(x)

(x ∈ A, y ∈ B(x))
u ∈ C

E(cck t, (x, y)u) = cck (E(t[k(E({ }, (x, y)u))/k], (x, y)u)) ∈ C

t ∈ A k not free in t

cck t = t ∈ A

Without universes, one can only show that the theory is proof-irrelevant, as
enforced by Smith’s result on the independence of Peano’s fourth axiom in the
theory without universes [10]. With one universe, ¬0 = 1 is provable and the
computational classical theory is inconsistent.

2.8 Inconsistency of the Set-predicative Calculus of Inductive
Constructions Extended with Computational Classical Logic

Since the Calculus of Inductive Constructions [1] has Σ-types in Set and non
degenerated datatypes, its extension with computational classical logic in Set,
even in its Set-predicative version that Coq version 8 implements, is inconsistent.

We let ⊥ , ∀C : Set.C and ¬A , A → ⊥. To get computational classical
logic, the syntax of terms is extended with the following construction

t ::= . . . | cck:¬A t

The new inference rule is

Γ, k : ¬A ` t : A

Γ ` cck t : A

And the new set of reduction rules, at least, contains ηcc and a commutation
rule for non dependent case analysis.

caseP (cck:¬A t) of t1 . . . tn
→ cck:¬P (caseP (t[k(caseP { } of t1 . . . tn)/k]) of t1 . . . tn)

cck:¬A t → t k not free in t

Of course, one would expect of a fully-fledged computationally classical Cal-
culus of Inductive Constructions commutation rules of cc for all kinds of con-
structors (application, inductive types, constructors of inductive types, ...) and
only for a given reduction semantics (call-by-name of call-by-value), so as to
preserve confluence. But to get an inconsistency, commutation of cc with case
analysis (which is the construction needed for defining wit and prf) is enough.

3 Remarks

3.1 Commutation of cc with respect to prf

We did not consider the commutation rule of cc with respect to prf though it
would be needed for completion of the reduction system. The reason was that it
was not necessary in order to derive the degeneracy of the quantification domain
of the logic. In fact, the naive formulation of this rule

prf(cck π)→ cck′ prf(π[k′(prf { })/k]) (ζprf)

is problematic since it does not satisfy subject reduction. Indeed, if k has type
Σx.A(x) on the left-hand-side, then, on the right-hand-side, it maps to a con-
tinuation variable k′ (we chose a different name to emphasise the difference of
types) that cannot be typed consistently in the general case. The binding oc-
currence of k′ is intended to have type A(wit(cck π) while each place of the
form th k′ (prf π′) where it occurs bound expects it to be of type A(wit(cck π′)
for π′ a strict subproof of π. There is no reason that each of the wit(cck π′)
(that reduce to ccx.A

k wit(π′[k(wit { })/k])), and also wit(cck π) (that reduces
to ccx.A

k wit(π[k(wit { })/k])), all are convertible (and there are effectively not
convertible for the degeneracy proofs given in Sect. 2.3 and 2.6).

The mismatch can be solved by inserting a coercion that derives A(ccx.A(x)
k π)

from A(t) for any A, t and π. It may be worth to notice that along the interpreta-
tion in section 2.5 that throws away the argument of each typed cc and see it as
an Hilbert-style ε operator, the coercion simply corresponds to the characteristic
axiom of this ε operator.

3.2 Intuitionistic Uses of cc

The degeneracy proof needs that some calls to the continuation variables are
done to inhabit a priori non inhabited types, such as x = y for distinct variables
x and y.

Since cc can still be interesting from a computational point of view even in
an non essentially classical framework (typically to reason intuitionistically on
algorithms that “backtracks” thanks to cc), it can be interesting to restrict the
call to continuation variables set up by cc only on inhabited types.

By this way, any derivation using cc can trivially be translated into an intu-
itionistic one: just replace each occurrence of th k t of type B by b0 where b0 is
an inhabitant of B. Hence the logic is non degenerated. The soundness of this re-
placement remains to be investigated in presence of the (expected) commutation
rule ζprf.

3.3 Axiom of Choice vs Principle of Definite Description

For simplicity (since definite existential quantification is heavier to deal with than
indefinite existential quantification), we only considered ordinary (indefinite)
existential quantification.

However, we believe that the results still hold with Σ! instead of Σ. Espe-
cially, all witnesses occurring in the proofs we considered were unique witnesses.

Acknowledgements

I thank Freek Wiedijk for helpful discussions on the set-theoretic interpretation
of the functional space ¬¬A→ A.

References

1. The Coq development team: The Coq Proof Assistant Reference Manual, Ver-
sion 8.0. (2004). Available at http://coq.inria.fr/doc.

2. Coquand, T.: Metamathematical investigations of a calculus of constructions. In
Odifreddi, P., ed.: Logic and Computer Science. Apic Series 31. Academic Press
(1990) 91–122. Also INRIA Research Report number 1088, sept 1989.

3. Crolard, T.: A confluent lambda-calculus with a catch/throw mechanism. Journal
of Functional Programming 9(6) (1999) 625–647

4. Felleisen, M., Friedman, D.P., Kohlbecker, E., Duba, B.F.: Reasoning with con-
tinuations. In: First Symposium on Logic and Computer Science. (1986) 131–141

5. Griffin, T.G.: The formulae-as-types notion of control. In: Conf. Record 17th
Annual ACM Symp. on Principles of Programming Languages, POPL ’90, San
Francisco, CA, USA, 17-19 Jan 1990, ACM Press, New York (1990) 47–57

6. Martin-Löf, P.: Intuitionistic type theory. Bibliopolis (1984)
7. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical nat-

ural deduction. In: Logic Programming and Automated Reasoning: International
Conference LPAR ’92 Proceedings, St. Petersburg, Russia, Springer-Verlag (1992)
190–201

8. Pottinger, G.: Definite descriptions and excluded middle in the theory of construc-
tions (1989). Communication to the TYPES electronic mailing list.

9. Prawitz, D.: Natural Deduction - A proof-theoretical study. Almquist and Wiksell,
Stockholm (1965)

10. Smith, J.M.: The independence of Peano’s fourth axiom from Martin-Löf’s type
theory without universes. Journal of Symbolic Logic 53 (1988) 840–845

11. Spector, C.: Provably recursive functionals of analysis: a consistency proof of anal-
ysis by an extension of principles in current intuitionistic mathematics. In: Recur-
sive Function Theory: Proc. Symposia in Pure Mathematics. Volume 5., American
Mathematical Society (1962) 1–27

